Modeling the Metal-Solution Interface under Ultrahigh Vacuum: Vibrational Studies of the Coadsorption of Water and Carbon Monoxide on Rh(100)

نویسنده

  • Wayne Goodman
چکیده

The coadsorption of D2O and CO on Rh(100) under ultrahigh vacuum has been investigated by using infrared reflection absorption spectroscopy. The results show that the presence of D2O induces partial displacement of the CO molecules from linear to bridged configurations. The resulting spectra are very similar to those observed at equivalent CO coverages in an electrochemical environment. The spectral data indicate that the coadsorption of DzO and CO results in the formation of CO islands of varying coverage and the aggregation of both CO and D20 islands on Rh(100) at temperatures below D2O desorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coadsorption of Dioxygen and Carbon Monoxide on a Mg(100) Surface

The activation of carbon monoxide by oxygen on Mg(100) surface has been investigated by X-ray photoelectron spectroscopy (XPS). Carbon monoxide is only weakly adsorbed (dispersion-type forces) on a magnesium surface. The XPS result has shown that the dissociation of carbon monoxide leading to the formation of a metastable surface carbonate species occurs through the participation of an oxyg...

متن کامل

Water and CO (co-)adsorption on pseudomorphic Pt films on Ru(0001) - a low-temperature scanning tunneling microscopy study.

Coadsorption of CO and water under ultrahigh vacuum (UHV) conditions can be considered as a model system for the interaction of metal surfaces with CO in an aqueous electrochemical environment. Nevertheless, this has rarely been investigated, and in particular for catalytically relevant bimetallic systems, there is hardly any information available. Here we report results of a low-temperature sc...

متن کامل

CO oxidation on ruthenium: The nature of the active catalytic surface

The oxidation of CO, i.e. CO + =2O2 ! CO2, over metal surfaces is one of the most studied catalytic reactions. The details of the reaction mechanism under ultrahigh vacuum (UHV) conditions have been well understood for some time [1]. Under reducing or mildly oxidizing conditions for Pt, Pd, and Rh, metals used in automotive catalytic converters, the reaction proceeds via the Langmuir–Hinshelwoo...

متن کامل

In-Situ Vibrational Spectroscopic Studies on Model Catalyst Surfaces at Elevated Pressures

Elucidation of complex heterogeneous catalytic mechanisms at the molecular level is a challenging task due to the complex electronic structure and the topology of catalyst surfaces. Heterogeneous catalyst surfaces are often quite dynamic and readily undergo significant alterations under working conditions. Thus, monitoring the surface chemistry of heterogeneous catalysts under industrially rele...

متن کامل

Catalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT

Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001